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The photoreaction of tetrakis(2-methylthien-3-yl)ethene (1a) and its tetrakis(methylthio) derivative 1b
was investigated in the context of a potentially new chromic system responsive to both photoexcitation
and electron transfer. UV irradiation of 1 at low conversion leads to production of its cyclic isomer 2 while
2 returns to 1 upon vis irradiation, representative of facile photochromic behavior. In contrast, UV irra-
diation at high conversion transforms 1b to rearranged product 3b via the intermediacy of 2b.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, we reported1 the synthesis, X-ray crystallographic
analysis, and semiempirical calculations of tetrakis(2-methylth-
ien-3-yl)ethene (1a, Scheme 1) and its tetrakis(methylthio) deriv-
ative 1b, substances that were designed to be both photo-2,3 and
electrochromic.5,6 In 1a, the two pairs of vicinal thienyl groups
are oriented in a parallel arrangement. Likewise, in 1b, two pairs
of vicinal thienyl groups are arranged in a parallel orientation. As
a result, 1a–b are not expected to form the cyclized forms 2a–b
in the crystalline state on photoexcitation. Indeed, the crystalline
state photochemistry of 1a–b did not produce 2a–b.1 However,
ll rights reserved.
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the results of PM3 calculations suggest that 46% and 31% of 1a
and 1b at +25 �C, respectively, exist in metastable conformations
in which both or either pair of vicinal thienyl groups are oriented
in an antiparallel arrangement.1 These conformations in solution
should undergo photocyclization to form 2. In the studies de-
scribed below, we explored the photochemistry of 1 and 2 in
CH2Cl2 solution. The results of this effort show that 1 and 2 display
photochromic behavior in that their reversible interconversion can
be promoted by low conversion irradiation with UV and vis light.
In contrast, at high conversion (i.e., by a prolonged irradiation with
UV light) 1b is converted to the rearrangement product 3b, formed
via the intermediacy of 2b.
.jp (K. Mizuno).
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2. Photochromic properties of 1a–b

Absorption spectroscopic analysis shows that irradiation of a
CH2Cl2 solution of 1a (5 � 10�5 M) with UV light (k = 350 nm)7

for 1 min resulted in the appearance of an absorption band at
kab = 466 nm (Fig. 1a). This band disappeared almost completely
when the resulting solution was irradiated with vis light
(k = 450 nm)7 for 5 min (Fig. 1a). Similarly, UV irradiation of a
CH2Cl2 solution of 1b for 0.5 min resulted in the formation of an
absorption band at kab = 489 nm (Fig. 2a) and again this band dis-
appeared almost completely when the resulting solution was irra-
diated with vis light (k = 490 nm)7 for 5 min (Fig. 2a). The
observations suggest that the photochromic behavior displayed
by the systems is a consequence of the formation of the cyclic
photoproducts 2.8

Interestingly, the photochromic properties strongly depended
on the degree of the conversion of the initial UV-promoted photo-
reactions. Thus, a CH2Cl2 solution of 1a upon irradiation with UV
light for 30 min underwent a color change from colorless to pale
yellow associated with growth of absorption bands at kab = 303
and 461 nm (Fig. 1b). Unlike the 1-min irradiation process de-
scribed above, the 461-nm band did not disappear, the 303-nm
band decreased, and a new band at ca. 380 nm band appeared
when the resulting solution was irradiated with vis light
(k = 450 nm)7 for 30 min (Fig. 1b). The results suggest that 2a,
formed from 1a by photocyclization, readily undergoes a second-
ary photoreaction under UV irradiation conditions.
Figure 1. UV–vis absorption spectral changes of a CH2Cl2 solution of 1a
(5.0 � 10�5 M) on vis (450 nm) irradiation (a: 0–5 min, b: 0–30 min) after UV
(350 nm) irradiation (a: 1 min, b: 30 min).

Figure 2. UV–vis absorption spectral changes of a CH2Cl2 solution of 1b
(5.0 � 10�5 M) on vis (490 nm) irradiation (a: 0–5 min, b: 0–10 min) after UV
(350 nm) irradiation (a: 0.5 min, b: 30 min).
Several efforts to isolate 2a and the possible product(s) from 2a
and to assign them structures were unsuccessful.9

More informative results came from an analysis of the photore-
action of 1b, promoted by irradiation in a CH2Cl2 solution with UV
light for 30 min. In this case, the colorless solution turned to red-
orange in conjunction with growth of absorption bands at
kab = 327 and 492 nm (Fig. 2b). Unlike the case of the 0.5-min irra-
diation, the 492-nm band did not disappear when the resulting
solution was irradiated with vis light (k = 490 nm) for 10 min
(Fig. 2b). The results suggest that 2b reacts readily to produce
by-product(s) on UV irradiation. Indeed, UV irradiation of a CH2Cl2

solution of 1b (5 mM) for 1 h led to the formation of the rearranged
product 3b (Scheme 1), isolated as viscous red oil in 26% yield (con-
version 71%).10 Several attempts to generate a single crystal of 3b
for X-ray crystallographic analysis were unfruitful. However, the
structure of 3b could be determined by using 1H and 13C NMR,11

UV–vis spectroscopy, and mass spectroscopy, together with cyclic
voltammetry.12
3. Structural analysis of the rearranged product 3b

As shown in Figure 3, the 1H NMR spectrum of 3b comprised
broad bands even at +60 �C. This is especially true of the resonance
for the two Me groups (Mea) at d = 2.10 ppm and one for two aro-
matic protons (Ha) at d = 6.41 ppm.11,13 Peaks for several Me
groups at d = 2.36–2.50 ppm and two olefinic-protons (Hb) at
d = 6.18 ppm were also broadened slightly at +60 �C. These findings
suggest that severe steric hindrance exists between Mea and Hb,
and Ha and another Ha, as depicted in Figure 3 (top). When the
temperature was lowered to �35 �C, Mea, Hb, and Ha yield a set
of four singlet peaks, at 1.95–2.16, 6.09–6.12, and 6.27–6.49 ppm,
respectively. These phenomena can be explained by suggesting
that three conformers [parallel-A, antiparallel, and parallel-B, Figure
3 (top)] exist for 3b. Accordingly, four peaks of Ha observed at
6.27–6.49 ppm at �35 �C are due to a pair of 2 equiv protons in
3b (two singlet peaks of parallel-A and -B at 6.48 and 6.49 ppm)
and two nonequivalent protons of 3b (two singlet peaks of antipar-
allel, 6.27 and 6.29 ppm). Similarly, the four peaks associated with
Hb and Mea are accounted for by these three conformers.14 Note
that 3b (parallel-A) and 3b (parallel-B) are symmetric, while 3b
(antiparallel) is not symmetric. An analysis of 1H NMR spectra at
�35 �C suggests that 3b (antiparallel) exists to the extent of 50%
while 3b (parallel-A) and 3b (parallel-B) comprise 16% and 34% of
the conformer mixture.

These results indicate that 3b (parallel-A) and 3b (parallel-B) are
higher in energy than 3b (antiparallel) by 0.18 and 0.54 (or 0.54 and
0.18) kcal/mol, respectively.

The three conformers of 3b were predicted by using PM3 and
density functional theory (DFT) calculation-based conformational
analysis. 15 Interestingly, the order of stability of the conformers
depends on the calculation method used. This result is probably
due to the small energy differences that exist between them (Table
1). The existence probabilities (%) calculated with DFT match the
results elucidated from 1H NMR spectra at �35 �C, but those with
PM3 did not, unfortunately. Namely, the DFT (B3LYP/3-21G*) cal-
culation indicates that the rearranged product 3b can exist in three
conformationally isomeric forms, including (i) parallel-A, (ii) anti-
parallel (+0.3 kcal/mol relative to parallel-A), (iii) parallel-B
(+0.4 kcal/mol), and in a ratio of 40:43:17 at �35 �C (Fig. 4).

Formation of rearranged products in diarylethene photochro-
mic processes was reported by Irie and co-workers for 4 and 9
(Scheme 2).18 The dimethyl derivative 4 affords two products 5
and 6 upon extended irradiation, in which the structure of the for-
mer corresponds to that of 3b.18a Note that the possibility of a sub-
stance related to 6 cannot form in our system. The phenyl



Figure 3. Three possible conformers of 3b (top) and 1H NMR spectra (600 MHz, CDCl3) of 3b observed at various temperatures (bottom).

Table 1
Calculated relative energies (DE) of the three conformers of 3ba

Method DE (3b)/(kcal/mol)

Parallel-A Antiparallel Parallel-B

PM3 +1.3 (6) +1.8 (24) 0b (90)
B3LYP/3-21G* 0b (40) +0.3 (43) +0.4 (17)
B3LYP/6-31G* 0b (51) +0.4 (40) +0.8 (9)
B3LYP/6-31G** 0b (53) +0.5 (38) +0.8 (9)

a The numbers in parentheses are the calculated existence probabilities (%) at
�35 �C.

b The base of calculation of DE (3b) for other conformers.

Figure 4. Three possible conformers of 3b calculated by using t
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derivative 9 gave a rearranged product 10. The chemical shifts
of the two aliphatic carbons in the 13C NMR spectrum of 10
were reported to be 59.6 and 65.8 ppm in CDCl3 (Scheme 2).18b

Similar chemical shifts of 3b were found at 52.9 (br) and 66.8
(br) ppm in CDCl3 at +35 �C (Fig. 3). This comparison adds further
support for the assignment of the structure of 3b. In addition, 3b
displayed a reversible one-electron oxidation wave in cyclic
voltammetry (Eox

1=2 ¼ þ0:45 V vs Ag/Ag+ in CH3CN containing
0:1 M Et4NþClO�4 ).12 The observed stability upon single electron-
transfer oxidation is consistent with the assigned structure of
3b.
he B3LYP/3-21G* method. Left: front view, right: side view.
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Regarding the mechanism for photochemical formation of 5
from 4, Irie and co-workers suggested a stepwise pathway via
the intermediacy of biradicals 7 or 8.18b Although the mechanism
for the formation of 3b is not clear at this stage, a similar stepwise
mechanism may be operative.

4. Conclusion

The photochromic behavior of new tetrathienylethenes 1, de-
signed to respond to not only photoexcitation but also electron
transfer, has been explored. The results of the investigation show
that 1 and 2 are photochromic at low conversions, showing color
changes from colorless to pale yellow (2a) or red-orange (2b).
Upon prolonged irradiation, 1b yields the rearranged isomer
3b, which has unique 1H NMR spectroscopic characteristics
caused by a slow interconversion of three possible conformers.
Detailed studies of the electrochromic properties of 1, 2, and
3b are now in progress, the results of which will be published
elsewhere.
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